## Two masses connected by a spring

phrygian777
Posts: 13
Joined: Fri Aug 19, 2011 11:31 pm

### Two masses connected by a spring

Two bars of masses m1 and m2 connected by a non-deformed light spring rest on a horizontal plane. The coefficient of friction between the bars and the surface is equal to k. What minimum constant force has to be applied in the horizontal direction to the bar of mass m1 in order to shift the other bar?

My approach was to set the force on m2 = 0, so the spring force equals the friction force. Then I set the force on m1 = 0, so the force equals the spring force plus the friction force on m1. This gives the answer as F=k(m1+m2)g.

However the correct solution is found by setting the work done by block 1 = 0, which gives k(m1+(m2)/2)g.

Can someone help me physically understand why the solution would be found by setting the work done equal to zero rather than the net forces equal to zero?

Thanks for the help!

diliu
Posts: 9
Joined: Sun Aug 29, 2010 2:05 pm

### Re: Two masses connected by a spring

The main problem in your solution, I think, comes from your neglect of the speed of when a force acts on it (infect, I did the same mistake when I solve this at first). If the bars were connected by a light cord instead of a spring, your answer is correct.

So,note that, when is fix, and , under the influence of the spring, moves like a damped harmonic oscillator. The amplitude of the first-half period (from left to right, for example) satisfies:
,
where, is the spring constant. It is clear to see that the spring will be extended as long as in this process, which leads the maximum force, exerts on , .

And thus we have:

So, the minimum value of , is given as:

namely,

vikrambijarniya
Posts: 4
Joined: Fri Mar 16, 2012 10:28 am

### Re: Two masses connected by a spring

a slightly different method can be like this :
as the force is applied on the mass m1. and second block will move if the force exceeds um2g. this force will be applied by the spring. so minimum compression in the spring to provide this force is kx. so kx = um2g. where k= spring constant, u=friction coefficient
now apply energy conservation Fx - 1/2kx^2 = um1gx
i.e. F = 1/2kx+um1g = um2g/2 +um1g 